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Deep Reinforcement Learning (Deep RL)
Deep Learning Deep RL

* What is it? Framework for learning to solve sequential decision
making problems.

 How? Trial and error in a world that provides occasional rewards

 Deep? Deep RL = RL + Neural Networks

Illil- m::::::g?ens For the full list of references visit: [306, 307] https//deeplearnlngmltedu 2019
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Types of Learning

* Supervised Learning
* Semi-Supervised Learning
* Unsupervised Learning

* Reinforcement Learning

|ll

It’s all “supervised” by a loss function!

*Someone has to say what’s good and what’s bad (see Socrates, Epictetus, Kant, Nietzsche, etc.)

d A Supervision*
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Feed Forward, Recurrent, Convolutional Neural Networks
Inout: Network: Human Annotated
LR erwork Output: Ground Truth:
Any . . E e
N —» Representation ——» Prediction [«-|---- Prediction |
Encoder : !
N J

Supervised learning is “teach by example”:
Here’s some examples, now learn patterns in these example.

Reinforcement learning is “teach by experience”:
Here’s a world, now learn patterns by exploring it.

g
Networks for Learning Actions, Values, Policies, and/or Models

Input: Network: Experienced

Output: Ground Truth:
Environment Any . .
— Representation —»| Action <--4 Reward
Sample Encoder

For the full list of references visit:
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Machine Learning:
Supervised vs Reinforcement

Supervised learning is “teach by example”:
Here’s some examples, now learn patterns in these example.

Reinforcement learning is “teach by experience”:
Here’s a world, now learn patterns by exploring it.

Baby starts walking

Baby falls down in between
and feel the pain of the
bruises

Failure

Baby starts walking
(¢ “) o
Baby reaches the END GOAL ‘ ;
(i.e. Couch), EVERYONE ' ﬁ
including baby is happy ¥/

e &

Success

Institute of

W Massachuselts  [or the full list of references visit: [3 30]
Technology https://hcai.mit.edu/references
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Reinforcement Learning in Humans

 Human appear to learn to walk through “very few examples” of
trial and error. How is an open question...

* Possible answers:
* Hardware: 230 million years of bipedal movement data.
* Imitation Learning: Observation of other humans walking.
* Algorithms: Better than backpropagation and stochastic gradient descent

HI s e [286, 291] https://deeplearning.mit.edu 2019
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Image Recognition: Audio Recognition:
If it looks like a duck Quacks like a duck

Activity Recognition:
Swims like a duck
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i__lfp_qwl_e_Qg?__H “It was so indescribably beautiful; it was so simple and
; so elegant. | couldn’t understand how I’'d missed it and
Reasoning | just stared at it in disbelief for twenty minutes. Then
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¢ was still there. It was still there. | couldn’t contain
' Action | myself, | was so excited. It was the most important
T ; """" | moment of my working life. Nothing | ever do again

will mean as much."
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Reinforcement Learning Framework

At each step, the agent:

Open Questions:

e Executes action « What cannot be modeled in

e Recejve reward learning in this framework?

Environment

State

Reward @

Action

W Massachuse or the full list of references visit: - i I
i ™ o i coerences [80] https://deeplearning.mit.edu 2019
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Environment and Actions

Fully Observable (Chess) vs Partially Observable (Poker)
Single Agent (Atari) vs Multi Agent (DeepTraffic)

Deterministic (Cart Pole) vs Stochastic (DeepTraffic)

Static (Chess) vs Dynamic (DeepTraffic)

Discrete (Chess) vs Continuous (Cart Pole)

Note: Real-world environment might not technically be stochastic
or partially-observable but might as well be treated as such due
to their complexity.

Illil- Egﬁ?ﬁ’%ge“‘ For the full list of references visit: https//deeplearnlngmltedu 2019
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The Challenge for RL in Real-World Applications

Reminder:

Open Challenges. Two Options:

Supervised learning: ] ]
teach by example 1. Real world observation + one-shot trial & error

Reinforcement learning:
teach by experience

2. Realistic simulation + transfer learning

1. Improve

4
\ Transfer
2. g Learning

: ' J o('j;, s
2 \W Id Fy S 2. Improve
7 ob {;"7;‘.".:v & ~ Simulation

Mir Ec;,tlg;“ ror the full it of references visit https://deeplearning.mit.edu 2019
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Major Components of an RL Agent

An RL agent may be directly or indirectly trying to learn a:
* Policy: agent’s behavior function
 Value function: how good is each state and/or action

* Model: agent’s representation of the environment

S0, A0, 7T1,S1,A1, 72, «oo, Sn=1,An—-1,T1, S
t t t
state Terminal state

action

reward

I mmm  Massachusetts  [or the full list of references visit:
I I Institute of
Technolo:
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Meaning of Life for RL Agent: Maximize Reward

* Futurereward: R; =1 + 1441 + Tty + -+ 1,
e Discounted future reward:

Ry = re+yrepr +Vorep + -+ vy

* A good strategy for an agent would be to always choose
an action that maximizes the (discounted) future reward

 Why “discounted”?
* Math trick to help analyze convergence

* Uncertainty due to environment stochasticity, partial
observability, or that life can end at any moment:

“If today were the last day of my life, would | want
to do what I’'m about to do today?” — Steve Jobs

I mmm  Massachusetts  [or the full list of references visit:
I I Institute of [84]

https://hcai.mit.edu/references https//deeplearnlngmltedu 2019
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Robot in a Room

actions: UP, DOWN, LEFT, RIGHT

(Stochastic) model of the world:

_1 Action: UP

80% move UP
10% move LEFT

START 10%  move RIGHT

L]

=

SN

 Reward +1 at [4,3], -1 at [4,2]
e Reward -0.04 for each step
* What’s the strategy to achieve max reward?

* We can learn the model and plan

* We can learn the value of (action, state) pairs and act greed/non-greedy
* We can learn the policy directly while sampling from it

Wi s https://deeplearning.mit.edu 2019
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Optimal Policy for a Deterministic World

Reward: -0.04 for each step

- | =) | =) | ] actions: UP, DOWN, LEFT, RIGHT

When actions are deterministic:

7\ A | v

100% move UP

f 0% move LEFT
0% move RIGHT

Policy: Shortest path.

I ™ e e https://deeplearning.mit.edu 2019
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Optimal Policy for a Stochastic World

Reward: -0.04 for each step

- | -

-

*

-

-

actions: UP, DOWN, LEFT, RIGHT
When actions are stochastic:

V]

80% move UP

10% move LEFT
10% move RIGHT

Policy: Shortest path. Avoid -UP around -1 square.

For the full list of references visit:
https://hcai.mit.edu/references
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Optimal Policy for a Stochastic World

Reward: -2 for each step

tions: UP, DOWN, LEFT, RIGHT
# # # +1 o ’ ’ ’

When actions are stochastic:

1) =p | 1|
80% move UP

10% LEFT
=) | | =) f 10%  move RIGHT

Policy: Shortest path.

W W Massachusetts  [or the full list of references visit
I I Institute of .

https://hcai.mit.edu references: https//deeplearnlngmltedu 2019
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Optimal Policy for a Stochastic World

Reward: -0.1 for each step  Reward: -0.04 for each step
> = = | || ==,
4 4 '
t = 1 ¢ 1 -

More urgent

Less urgent

I W W Massachusetts  [or the full list of references visit
I I Institute of
Technology https://hcai.mit.edu/references
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Optimal Policy for a Stochastic World

Reward: +0.01 for each step

-

-

-

-

-

-

-

actions: UP, DOWN, LEFT, RIGHT
When actions are stochastic:

up

80% move UP

10% move LEFT
10% move RIGHT

Policy: Longest path.

oooooooooo

For the full list of references visit:
https://hcai.mit.edu/references
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Lessons from Robot in Room

* Environment model has big impact on optimal policy

* Reward structure has big impact on optimal policy

and {hat has made al the dlfference

Robert Frost

mmm  Massachusetts or the full list of references visit: . i I
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Reward structure may have
Unintended Consequences

Human Al (Deep RL Agent)

=

ae e

—/3

Player gets reward based on:
1. Finishing time

2. Finishing position

3. Picking up “turbos”

https://deeplearning.mit.edu 2019
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Al Safety

Risk (and thus Human Life) Part of the Loss Function

- Ep— _ —

I I I i W Massachusetts  For the full list of references visit:
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Examples of Reinforcement Learning

Cart-Pole Balancing

* Goal — Balance the pole on top of a moving cart

e State — Pole angle, angular speed. Cart position, horizontal velocity.
* Actions — horizontal force to the cart

 Reward — 1 at each time step if the pole is upright

I s o o e e vt [166] https://deeplearning.mit.edu 2019
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Examples of Reinforcement Learning

Doom*

* Goal:
Eliminate all opponents

e State:
Raw game pixels of the game

* Actions:
Up, Down, Left, Right, Shoot, etc.

* Reward:

* Positive when eliminating an opponent,
negative when the agent is eliminated

* Added for important thought-provoking considerations of Al safety in the context of
autonomous weapons systems (see AGI lectures on the topic).
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Examples of Reinforcement Learning

Grasping Objects with Robotic Arm
* Goal - Pick an object of different shapes

e State - Raw pixels from camera

* Actions — Move arm. Grasp.

* Reward - Positive when pickup is successful

Illil- m::f:f:‘;fe‘ts For the full list of references visit: [332] httpS//deepleal’nlngmltedu 2019
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Examples of Reinforcement Learning

B : ‘

Human Life

* Goal - Survival? Happiness?

e State - Sight. Hearing. Taste. Smell. Touch.
* Actions - Think. Move.

e Reward — Homeostasis?

?s=

828
-3
3E
o ®

achusetts For the full updated list of references visit:
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Key Takeaways for Real-World Impact

* Deep Learning:
* Fun part: Good algorithms that learn from data.
* Hard part: Good questions, huge amounts of representative data.

* Deep Reinforcement Learning:
* Fun part: Good algorithms that learn from data.
* Hard part: Defining a useful state space, action space, and reward.
* Hardest part: Getting meaningful data for the above formalization.

I mmm  Massachusetts For the full updated list of references visit:
II Institute of

Technology

https://deeplearning.mit.edu 2019
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3 Types of Reinforcement Learning

Better
Sample Efficient

i

at
<5 — . —
N | =

Model-based
(100 time steps)

Model-based

* Learn the model of
the world, then plan
using the model

* Update model often

e Re-plan often

Less
Sample Efficient

Off-policy

X Actor-critic
Q-learning

(1 M time steps)

Value-based

e Learn the state or
state-action value

* Act by choosing best
action in state

* Explorationis a
necessary add-on

Policy Gradient
(10 M time steps)

—— A
—

Evolutionary/
gradient-free
(100 M time steps)

On-policy

Policy-based

* Learn the stochastic
policy function that
maps state to action

* Act by sampling policy

e Exploration is baked in

N Massachusetts
I I Institute o
Tech

P For the full list of references visit:
nology https://hcai.mit.edu/references

[331, 333]
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Taxonomy of RL Methods

‘ Model-Free RL

RL Algorithms

'

(

|

1

Policy Optimization

Policy Gradient

A2C / A3C

-

PPO

TRPO

<

)

DDPG

Q-Learning

¥

Model-Based RL

——

| Learn the Model

Given the Model ’

TD3

—> World Models \—T AlphaZero }
C J

A

I

SAC

A

A

A

Y

DQN
C51 > I2A
J )
QR-DQN —>  MBMF
N J
I'a M\
HER L—>  MBVE
J C J

Link: https://spinningup.openai.com

I I I mmm  Massachusetts  [or the full list of references visit: [334]

I I Institute of

Technology https://hcai.mit.edu/references
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Taxonomy of RL Methods

Model-Free RL

RL Algorithms

|
———

Model-Based RL

—

Policy Optimization ’ Q-Learning Learn the Model
Policy Gradient < ~ 4|> DQN —> World Models
- > DDPG < - - : g
A2C / A3C [« ) . > C51 —> I2A
- J TD3 < \ J = J
PPO < . . QR-DQN —> MBMF
- - > SAC : A \/ S /
TRPO < ‘ > HER L—»>  MBVE

N

Given the Model

\—> AlphaZero

I N Massachusetts
I I Institute of
Technology

For the full list of references visit:
https://hcai.mit.edu/references

[334]
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Q-Learning

» State-action value function: Q%(s,a)

* Expected return when startingin s,
performing a, and following ©t

* Q-Learning: Use any policy to estimate Q that maximizes future reward:
* Qdirectly approximates Q* (Bellman optimality equation)
* Independent of the policy being followed
* Only requirement: keep updating each (s,a) pair

Qr11(st, at) = Qt(st, at)+a (Rt—l—l + 7 max Qe(se41, a) — Qe(st, at))

Old State Reward

Wi ™ https://deeplearning.mit.edu 2019
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Exploration vs Exploitation

 Deterministic/greedy policy won’t explore all actions
* Don’t know anything about the environment at the beginning
* Need to try all actions to find the optimal one

 g-greedy policy
*  With probability 1-e perform the optimal/greedy action, otherwise random action
* Slowly move it towards greedy policy: € -> 0

NiT s https://deeplearning.mit.edu 2019
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Q-Learning: Value lteration

Qry1(st, at) = Qe(st, at)ﬂ:ﬁ% (Rt—i-l + ngx Qt(st+1, @) — Qe(st, at))

Old State
Al A2 A3 A4
S1 +1 +2 -1 0
S2 +2 0 +1
S3 -1 +1 0

Reward

initialize Q[num states,num actions] arbitrarily
observe initial state s
repeat
select and carry out an action a
observe reward r and new state s’
Q[s,a] = Qls,al + alr + y max,, Q[s',a'] - Qls,al)
Sis=s
until terminated

Hmm Massachusetts
I I Institute of
Technology

References: [84]
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Q-Learning: Representation Matters

* In practice, Value Iteration is impractical
* Very limited states/actions
e Cannot generalize to unobserved states

* Think about the Breakout game

 State: screen pixels

* Image size: 84 X 84 (resized)
. Consecutive 4 images 25684X84X4 g5 in the Q-table!

e Grayscale with 256 gray levels
= 1092970 >> 1082 atoms in the universe

References: [83, 84] https://deeplearning.mit.edu 2019
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Deep RL = RL + Neural Networks

Deep
Learning

Representation
Learning

Machine
Learning

Artificial
Intelligence

Output
(object identity)

3rd hidden layer

(object parts)

2nd hidden layer
(corners and

coutomrs)

Visible layer

(input pixels)

Representation: Representation:
The Earth is fixed center of The Sun is fixed center of
our Solar System our Solar System

Geocentric Model Heliocentric Model

I W W Massachusetts  [or the full list of references visit:
II Institute of o [20]
Technology https://hcai.mit.edu/references

https://deeplearning.mit.edu 2019



https://deeplearning.mit.edu/
https://hcai.mit.edu/references

DQN: Deep Q-Learning

Use a neural network to
approximate the Q-function: * I i

Network

a Action

Q(s,a;0) = Q*(s,a)

s—  Function [ Qsa)
a——» ApprOXimator «—targets or errors S State » Network Q-value 2

Q-value 3

Hmm Massachusetts i isit:
I IIII Inassa For the full updated list of references visit: [83]
Technology
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Deep Q-Network (DQN): Atari

Convcv)lution Convglution Fully cgnnected Fully cgnnected
}ir\‘omun‘}
. . .
F‘"D N /H A\ ¢ 3\
iy . . o\ | s ]
/| - g /3 NN 2\ .
(% A ;N I\
- ot ] @ (4 Q. 1 ©: —m
¥ u‘:“f‘ . ° o /)
\ N\ ° ° ° /f
‘.‘ \‘u . ° ° ° N+O
\ Dl:‘ S | L ! i {
Layer Input Filter size | Stride Num filters | Activation | Output
convi 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU 9x9x64
conv3 9x9x64 3x3 1 64 RelLU 7X7x64
fc4 7xX7x64 512 RelLU 512
fcb 512 18 Linear 18

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

mmm M husetts ; it
I II II In::i:::e “’;e For the full updated list of references visit: [83]

Technology

https://deeplearning.mit.edu 2019



https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references

DQN and Double DQN

* Loss function (squared error):

L = E[(r + ymax, Q(s', @) — Q(s,))?]
taéet pred?ction

* DQN: same network for both Q

* Double DQN: separate network for each Q

* Helps reduce bias introduced by the inaccuracies of
Q network at the beginning of training

mmm M husetts ; i
I II I I In:;:::e ;'?e For the full updated list of references visit: [83]

https://deeplearning.mit.edu 2019
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DQN Tricks

* Experience Replay
» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process
* Fixed Target Network

* Error calculation includes the target function depends on network
parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.

Q(stva)  ans Q(sts a) + a Tt+1 . 7m1;ax Q(3t+1,P) = Q(sta (1,)

target Q function in the red rectangular is fixed

Replay X X
Target X X
Breakout 316.8 240.7 10.2 3.2
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 28944 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0

I II il- m:;f:::g?e“s For the full updated list of references visit: [83, 167]

Technology
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Atari Breakout

ima.. — B ima... — B ima.. -

After After After
10 Minutes 120 Minutes 240 Minutes
of Training of Training of Training

EEm Mas:
U e
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Dueling DQN (DDQN)

 Decompose Q(s,a)
* V(s): the value of being at that state

F -
Cc
A
]
r
e Q(s,al1)
9
a
t
i

A(s,al

)

E— (

s,a2)

Als)

as3)

n
g
I
5 a
Y
e
r
Q values

Q(s,a) = A(s,a) + V(s)

* A(s,a): the advantage of taking action a in state s versus all other possible

actions at that state

* Use two streams:

* one that estimates the state value V(s)
* one that estimates the advantage for each action A(s,a)

» Useful for states where action choice does not affect Q(s,a)

I W W Massachusetts  [or the full list of references visit:
Institute of - [336]
II Technology https://hcai.mit.edu/references
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Prioritized Experience Replay

Hyperparameter used to
reintroduce some
randomness in the
experience selection

— 5 | 6 p’l for the replay buffer
pt t (Z ) T : : If'a = 0 pure uniform
I— k k randomness
Constant assures

that no experience [fa =1 only select the
experiences with the
highest priorities

Priority
value

Magnitude of our

I'D error =
has 0 probability to

Normalized by all
be taken.

priority values m
Replay Buffer

Pt H
Pt+1 -

Pt+3

Ptsg Sample ',II

Batch of experiences

Experience Replay Buffer
aka Memory

* Sample experiences based on impact not frequency of occurrence

I W W Massachusetts  [or the full list of references visit:
Institute of o [3 3 6]
I I Technology https://hcai.mit.edu/references
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Taxonomy of RL Methods

(

Model-Free RL

RL Algorithms

!

3

Model-Based RL

—

Policy Optimization ’ Q-Learning Learn the Model
Policy Gradient+7 ~ > DQN —> World Models
- - > DDPG < : g : ’
A2C / A3C [« ) . > C51 —> I2A
- J TD3 < \ J = J
PPO < . . QR-DQN —> MBMF
- - > SAC : A \/ S /
TRPO < ‘ > HER L—»>  MBVE

N

Given the Model

\—> AlphaZero

I N Massachusetts
I I Institute of
Technology

For the full list of references visit:
https://hcai.mit.edu/references

[334]
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Policy Gradient (PG)

* DQN (off-policy): Approximate Q and infer optimal policy

* PG (on-policy): Directly optimize policy space

raw pixels hidden layer

Policy Network

Good illustrative explanation:
http://karpathy.github.io/2016/05/31/rl/

“Deep Reinforcement Learning:
Pong from Pixels”

For the full updated list of references visit: [63]

https://deeplearning.mit.edu 2019
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Policy Gradient — Training

Policy Gradients: Run a policy for a while. See what actions led to high rewards. Increase their probability.

uP DOWN upP UP DOWN DOWN DOWN UupP WIN
$ DOWN s UP r® uP P DOWN & UP r® UP r® LOSE
& uP % UP r® DOWN>' DOWN & DOWN>. DOWN>‘ UP -® LOSE
DOWN uP UP DOWN UP UP WIN
T !

* REINFORCE: Policy gradient that increases probability of good actions and
decreases probability of bad action:

VoE|R:| = E[VglogP(a)R:]

I husetts i isit:
IIIII In:tsif:fegfe For the full updated list of references visit: [63, 204]
Technology
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Policy Gradient

* Pros vs DQN:

* Messy World: If Q function is too complex to be learned, DQN may fail
miserably, while PG will still learn a good policy.

* Speed: Faster convergence
* Stochastic Policies: Capable of learning stochastic policies - DQN can’t
e Continuous actions: Much easier to model continuous action space

* Cons vs DQN:
* Data: Sample inefficient (needs more data)
 Stability: Less stable during training process.
* Poor credit assighment to (state, action) pairs for delayed rewards

AWESOME GOOD GOOD GOOD

Problem with REINFORCE: % % % % %

Calculating the reward at the
end, means all the actions will

be averaged as good because GOOD GooD GOOD GooD Goop
the total reward was high. > > > > " %
A, A, As A, A,

III'- ms“a::ofe“s ForthefuII_Iist.ofreferencesvisit: [63, 335] https//deeplearnlngmltedu 2019
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Taxonomy of RL Methods

(

Model-Free RL

RL Algorithms

!

3

Model-Based RL

—

Policy Optimization ’ Q-Learning Learn the Model
Policy Gradient < ~ > DQN —> World Models
- - > DDPG < : g : ’
A2C / A3C 47 p . >  Cs51 > I2A
- J TD3 < \ J = J
PPO < . . QR-DQN —> MBMF
- - > SAC : A \/ S /
TRPO < ‘ > HER L—>  MBVE

N

Given the Model

\—> AlphaZero

I N Massachusetts
I I Institute of
Technology

For the full list of references visit:
https://hcai.mit.edu/references

[334]

https://deeplearning.mit.edu 2019



https://deeplearning.mit.edu/
https://hcai.mit.edu/references

Advantage Actor-Critic (A2C)

 Combine DQN (value-based) and REINFORCE (policy-based)

* Two neural networks (Actor and Critic):
* Actor is policy-based: Samples the action from a policy
* Critic is value-based: Measures how good the chosen action is

Policy Update: A9 — (¥ * VH % (ZOQ W(Sty At? 9)) *M
New update: A = o % V@ * (lOQ W(St, At, 9)) ¥ Q(Sty At)‘

e Update at each time step - temporal difference (TD) learning

mEm  Massachusetts .
IIIII Inateta ot For the full list of references visit: [335]
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Asynchronous Advantage Actor-Critic (A3C)

Training in parallel Training in parallel
Agent 1
~N - Agent 2
Global Global
Network Network Coordinator

Parameters Parameters Agent3

J L
Agentn

A3C (Async) A2C (Sync)

* Both use parallelism in training

* A2C syncs up for global parameter update and then start each
iteration with the same policy

I ™ orhe Moot reterenees vot [337] https://deeplearning.mit.edu 2019
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Policy Optimization

Taxonomy of RL Methods

(

Model-Free RL

¢ ) ¥

RL Algorithms

!

’ Q-Learning

3

Model-Based RL

—

(

Policy Gradient < ~
. DDPG
A2C / A3C < - -
L J TD3 <
PPO < . ‘
. y > SAC <
TRPO < ‘

Learn the Model
> DQN —> World Models
> C51 —> I2A
- J - J
QR-DQN —> MBMF
> HER — MBVE

N

Given the Model

\—> AlphaZero

I N Massachusetts
I I Institute of
Technology

For the full list of references visit:
https://hcai.mit.edu/references

[334]
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Deep Deterministic Policy Gradient (DDPG)

* Actor-Critic framework for learning a deterministic policy
e Can be thought of as: DQN for continuous action spaces

* As with all DQN, following tricks are required:
* Experience Replay

Action Action
* Target network

* Exploration: add noise to actions, (g9} Noise
reducing scale of the noise
as training progresses

NoSe< o

Input Input

P ™ forine bl i of eferences vt [341] https://deeplearning.mit.edu 2019
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Taxonomy of RL Methods

RL Algorithms

!

(

Model-Free RL

3

Model-Based RL

—

Policy Optimization ’ Q-Learning Learn the Model Given the Model
Policy Gradient < ~ > DQN —> World Models \—> AlphaZero
- > DDPG < : g : ’
A2C / A3C [« ) . > C51 —> I2A
- J TD3 < \ J = J
PPO {— . . QR-DQN - > MBMF
- - > SAC : A \/ S /
TRPO < ‘ > HER L—»>  MBVE
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Policy Optimization

* Progress beyond Vanilla Policy Gradient:
e Natural Policy Gradient
* TRPO
« PPO

* Basic idea in on-policy optimization:
Avoid taking bad actions that collapse the training performance.

Line Search: Trust Region:
First pick direction, then step size First pick step size, then direction

I W W Massachusetts  [or the full list of references visit:
Institute of o [ 33 9]
I I Technology https://hcai.mit.edu/references
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Taxonomy of RL Methods

RL Algorithms

|
———

Model-Free RL Model-Based RL

—

{ R T S

Policy Optimization ’ Q-Learning Learn the Model Given the Model
Policy Gradient < ~ > DQN —> World Models L* AlphaZero ]
- \ > DDPG < : g : g -
A2C / A3C [« ) . > C51 —> I2A

- J TD3 < ,\ J = J

PPO < . . QR-DQN —> MBMF
- - > SAC : A \/ S /

TRPO |« ‘ / >  HER L—>  MBVE
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Game of Go

i
r'/‘/.“ _
R fﬁ;‘[ |23
I 7%
Dia. 4 Dia. 5 Dia. 6 Dia. 7 el
liberties atari capture result \:;\ R
\‘;\'R’*‘: (
I\\t\ﬁ‘.’o
W2
W
Game size Board size N 3N Percent legal  legal game positions (A094777)["]
1x1 1 3 33% 1
2x2 4 81 70% 57
3x3 9 19,683 64% 12,675
4x4 16 | 43,046,721 56% 24,318,165
5x5 25 8.47x10" 49% 4.1x10'"
9x9 81  4.4x10%8 23.4% 1.039x1038
13x13 169 | 4.3x1080 8.66% 3.72497923x107°
19%19 361 | 1.74x10172 1.196% 2.08168199382x10170
I s forte ful wpdeted istofreferences vt 1970 https://deeplearning.mit.edu 2019
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AlphaGo (2016) Beat Top Human at Go

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network

| ' ‘Self Play : }} y ‘Self Play :

Computer Programs Calibration Human Players

DeepMind challenge match " P Lee Sedol (9p)

AlphaGo (Mar 2016) , (¥ Top player of
4-1 N past decade
s
»L Beats
Nature match Fan Hui (2p)
AlphaGo (Oct 2015) 3-times reigning
50 Euro Champion
KGS

Amateur

Crazy Stone and Zen
humans

mmm M husetts ; it
I II II In::i:::e “’;e For the full updated list of references visit: [83]

Technology

https://deeplearning.mit.edu 2019



https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references

AlphaGo Zero (2017): Beats AlphaGo

5000 -

4000
3000 -
2000 -

1000 -

Elo Rating

~1000 -

-2000 -

1 1 1 1 1

15 20 25 30 35 40

-
—
-

O -
(&)
-
o

=== AlphaGo Zero 40 blocks  eee=e AlphaGo Lee esee AlphaGo Master

esx.:c:gseﬁs For the full updated list of references visit: [149] httpS//deepleal’nlngmltedu 2019
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AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

* Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

e Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

a Selection b  Expansion c Evaluation d Backup
maNe Q+uP) "¢ i N ;
— > &
. B s 15 Ad i .

IIIiI- Egﬁz‘z{:‘gem For the full updated list of references visit: [170] https//deeplearnlngmltedu 2019
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AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

* Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

* Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

e “Tricks”

e Use MCTS intelligent look-ahead (instead of human games) to improve
value estimates of play options

* Multi-task learning: “two-headed” network that outputs (1) move
probability and (2) probability of winning.

* Updated architecture: use residual networks

IIIII .:. :‘ttlg)f,ns For the full updated list of references visit: [170] https//deeplearnlngmltedu 2019
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AlphaZero vs Chess, Shogi, Go

5k T
4k
f‘f 3k
o
=% S g
\ﬁ:;‘ \\-¥ .\ ; 2k
. -
g e 1k
AlphaZero
o— . 1
0 |
) 100k 208k 300k 400k 506k 606k 700K

Training Steps

Wi mes™ o e [340] https://deeplearning.mit.edu 2019
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AlphaZero vs Chess, Shogi, Go

Amount of Search per Decision

Human

State-of-the-Art
Chess Engines

Grandmaster AlphaZero
.- .
100 s 10,000's
of moves of moves

10,000,000 s
of moves

I W W Massachusetts  [or the full list of references visit:
Institute of o [340]
I I Technology https://hcai.mit.edu/references
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AlphaZero vs Chess, Shogi, Go

5_7 -
-~ e @
el
AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO
W:29.0% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W:86.9% Li31.1%

12.0% D:97.2% L:0.8% W:98.2% D:6.6% L:1.8% W:53.7% L:46.3%

O
@

E—

AZ wins [l AZ draws AZloses !  AzZwhite() AZblack @

I I I i I- m:z::::::eﬁs For the full list of references visit: [340]
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To date, for most successful robots operating in the real world:
Deep RL is not involved

WAYMO 02

Wi ™ e [169] https://deeplearning.mit.edu 2019
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To date, for most successful robots operating in the real world:
Deep RL is not involved
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But... that’s slowly changing:
Learning Control Dynamics

IIE s orihe o of eforences v https://deeplearning.mit.edu 2019
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But... that’s slowly changing:
Learning to Drive: Beyond Pure Imitation (Waymo)

Ill‘il- m::f:::;'?eﬂs For the full list of references visit: [343] 2019
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The Challenge for RL in Real-World Applications

Reminder:

Open Challenges. Two Options:

Supervised learning: ] ]
teach by example 1. Real world observation + one-shot trial & error

Reinforcement learning:
teach by experience

2. Realistic simulation + transfer learning

1. Improve

4
\ Transfer
2. g Learning

: ' J o('j;, s
2 \W Id Fy S 2. Improve
7 ob {;"7;‘.".:v & ~ Simulation

Mir Ec;,tlg;“ ror the full it of references visit https://deeplearning.mit.edu 2019
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Thinking Outside the Box:
Multiverse Theory and the Simulation Hypothesis

* Create an (infinite) set of simulation environments to learn in
so that our reality becomes just another sample from the set.

Illir Egﬁzge:ge“s For the full list of references visit: [342] 2019
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Next Steps in Deep RL

e Lectures: https://deeplearning.mit.edu

e Tutorials: https://github.com/lexfridman/mit-deep-learning

e Advice for Research (from Spinning Up as a Deep RL Researcher by Joshua Achiam)

e Background
* Fundamentals in probability, statistics, multivariate calculus.

e Deep learning basics

* Deep RL basics

* TensorFlow (or PyTorch)
* Learn by doing

* Implement core deep RL algorithms (discussed today)

* Look for tricks and details in papers that were key to get it to work

* lterate fast in simple environments (see Einstein quote on simplicity)
e Research

* Improve on an existing approach

* Focus on an unsolved task / benchmark

* Create a new task / problem that hasn’t been addressed with RL

| [T i EEE) https://deeplearning.mit.edu 2019
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