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Deep Reinforcement Learning (Deep RL)

• What is it? Framework for learning to solve sequential decision 
making problems.

• How? Trial and error in a world that provides occasional rewards

• Deep? Deep RL = RL + Neural Networks

[306, 307]

Deep Learning Deep RL

https://deeplearning.mit.edu/
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Types of Learning

• Supervised Learning

• Semi-Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

It’s all “supervised” by a loss function!
*Someone has to say what’s good and what’s bad (see Socrates, Epictetus, Kant, Nietzsche, etc.)

Neural 

Network
Input Output

Good or 

Bad?

Supervision*

https://deeplearning.mit.edu/
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Supervised learning is “teach by example”:
Here’s some examples, now learn patterns in these example.
Reinforcement learning is “teach by experience”:
Here’s a world, now learn patterns by exploring it.

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Machine Learning:
Supervised vs Reinforcement

Supervised learning is “teach by example”:
Here’s some examples, now learn patterns in these example.
Reinforcement learning is “teach by experience”:
Here’s a world, now learn patterns by exploring it.

[330]

Failure Success

https://deeplearning.mit.edu/
https://hcai.mit.edu/references


2019https://deeplearning.mit.eduFor the full list of references visit:

https://hcai.mit.edu/references

Reinforcement Learning in Humans

• Human appear to learn to walk through “very few examples” of 
trial and error. How is an open question…

• Possible answers:

• Hardware: 230 million years of bipedal movement data.

• Imitation Learning: Observation of other humans walking.

• Algorithms: Better than backpropagation and stochastic gradient descent 

[286, 291]

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Open Question:

What can be learned from 
data?
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References: [132]

Lidar
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Image Recognition:
If it looks like a duck

Activity Recognition:
Swims like a duck

Audio Recognition:
Quacks like a duck

https://deeplearning.mit.edu/
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Final breakthrough, 358 years after its conjecture:

“It was so indescribably beautiful; it was so simple and 
so elegant. I couldn’t understand how I’d missed it and 
I just stared at it in disbelief for twenty minutes. Then 

during the day I walked around the department, and 

I’d keep coming back to my desk looking to see if it 
was still there. It was still there. I couldn’t contain 
myself, I was so excited. It was the most important 

moment of my working life. Nothing I ever do again 

will mean as much."

https://deeplearning.mit.edu/
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Deep Learning

The promise of

Deep Reinforcement Learning
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Reinforcement Learning Framework

At each step, the agent:

• Executes action

• Observe new state

• Receive reward

[80]

Open Questions:

• What cannot be modeled in 
this way?

• What are the challenges of 
learning in this framework?

https://deeplearning.mit.edu/
https://hcai.mit.edu/references


2019https://deeplearning.mit.eduFor the full list of references visit:

https://hcai.mit.edu/references

Environment and Actions

• Fully Observable (Chess) vs Partially Observable (Poker)

• Single Agent (Atari) vs Multi Agent (DeepTraffic)

• Deterministic (Cart Pole) vs Stochastic (DeepTraffic)

• Static (Chess) vs Dynamic (DeepTraffic)

• Discrete (Chess) vs Continuous (Cart Pole)

Note: Real-world environment might not technically be stochastic 
or partially-observable but might as well be treated as such due 
to their complexity.

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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The Challenge for RL in Real-World Applications
Reminder:

Supervised learning:
teach by example

Reinforcement learning:
teach by experience

Open Challenges. Two Options:

1. Real world observation + one-shot trial & error

2. Realistic simulation + transfer learning

1. Improve 

Transfer 

Learning

2. Improve

Simulation

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Major Components of an RL Agent

An RL agent may be directly or indirectly trying to learn a:

• Policy: agent’s behavior function
• Value function: how good is each state and/or action

• Model: agent’s representation of the  environment

𝑠0, 𝑎0, 𝑟1, 𝑠1,𝑎1, 𝑟2,… , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛
state

action

reward

Terminal state

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Meaning of Life for RL Agent: Maximize Reward

[84]

• Future reward:    𝑅𝑡 = 𝑟𝑡 + 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑛
• Discounted future reward:

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1  + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑛−𝑡𝑟𝑛
• A good strategy for an agent would be to always choose 

an action that maximizes the (discounted) future reward

• Why “discounted”?

• Math trick to help analyze convergence

• Uncertainty due to environment stochasticity, partial 
observability, or that life can end at any moment: 

“If today were the last day of my life, would I want 
to do what I’m about to do today?” – Steve Jobs

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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actions: UP, DOWN, LEFT, RIGHT

(Stochastic) model of the world:

Action: UP

80% move UP
10% move LEFT
10% move RIGHT

Robot in a Room

+1

-1

START

• Reward +1 at [4,3], -1 at [4,2]

• Reward -0.04 for each step

• What’s the strategy to achieve max reward?
• We can learn the model and plan

• We can learn the value of (action, state) pairs and act greed/non-greedy

• We can learn the policy directly while sampling from it

https://deeplearning.mit.edu/
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Optimal Policy for a Deterministic World

Reward: -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

When actions are deterministic:

UP

100% move UP
0% move LEFT
0% move RIGHT

Policy: Shortest path. 

+1

-1

https://deeplearning.mit.edu/
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Optimal Policy for a Stochastic World

Reward: -0.04 for each step

+1

-1

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP
10% move LEFT
10% move RIGHT

Policy: Shortest path. Avoid -UP around -1 square.

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Optimal Policy for a Stochastic World

Reward: -2 for each step

+1

-1

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP
10% move LEFT
10% move RIGHT

Policy: Shortest path.

https://deeplearning.mit.edu/
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Optimal Policy for a Stochastic World

Reward: -0.1 for each step

+1

-1

+1

-1

Reward: -0.04 for each step

Less urgentMore urgent

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Optimal Policy for a Stochastic World

Reward: +0.01 for each step

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80% move UP
10% move LEFT
10% move RIGHT

Policy: Longest path.

+1

-1

https://deeplearning.mit.edu/
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Lessons from Robot in Room

• Environment model has big impact on optimal policy

• Reward structure has big impact on optimal policy

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Reward structure may have
Unintended Consequences

Player gets reward based on:

1. Finishing time

2. Finishing position

3. Picking up “turbos”

[285]

Human AI (Deep RL Agent)

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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AI Safety
Risk (and thus Human Life) Part of the Loss Function

https://deeplearning.mit.edu/
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Examples of Reinforcement Learning

Cart-Pole Balancing

• Goal — Balance the pole on top of a moving cart
• State — Pole angle, angular speed. Cart position, horizontal velocity.

• Actions — horizontal force to the cart

• Reward — 1 at each time step if the pole is upright

[166]

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Examples of Reinforcement Learning

Doom*

• Goal:
Eliminate all opponents

• State:

Raw game pixels of the game

• Actions:

Up, Down, Left, Right, Shoot, etc.

• Reward:

• Positive when eliminating an opponent, 
negative when the agent is eliminated

[166]

* Added for important thought-provoking considerations of AI safety in the context of 
autonomous weapons systems (see AGI lectures on the topic).

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Examples of Reinforcement Learning

Grasping Objects with Robotic Arm

• Goal - Pick an object of different shapes

• State - Raw pixels from camera

• Actions – Move arm. Grasp.

• Reward - Positive when pickup is successful

[332]

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Examples of Reinforcement Learning

Human Life

• Goal - Survival? Happiness? 

• State - Sight. Hearing. Taste. Smell. Touch.

• Actions - Think. Move. 

• Reward – Homeostasis?

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references
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Key Takeaways for Real-World Impact

• Deep Learning:

• Fun part: Good algorithms that learn from data.

• Hard part: Good questions, huge amounts of representative data.

• Deep Reinforcement Learning:

• Fun part: Good algorithms that learn from data.

• Hard part: Defining a useful state space, action space, and reward.

• Hardest part: Getting meaningful data for the above formalization.

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references
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3 Types of Reinforcement Learning

Model-based
• Learn the model of 

the world, then plan 
using the model

• Update model often

• Re-plan often

[331, 333]

Value-based
• Learn the state or 

state-action value

• Act by choosing best 
action in state

• Exploration is a 
necessary add-on

Policy-based
• Learn the stochastic 

policy function that 
maps state to action

• Act by sampling policy

• Exploration is baked in

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Taxonomy of RL Methods

[334]

Link: https://spinningup.openai.com

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Taxonomy of RL Methods

[334]

https://deeplearning.mit.edu/
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Q-Learning

• State-action value function: QS(s,a)

• Expected return when starting in s,
performing a, and following S

• Q-Learning: Use any policy to estimate Q that maximizes future reward:

• Q directly approximates Q* (Bellman optimality equation)

• Independent of the policy being followed

• Only requirement: keep updating each (s,a) pair

s

a

s’

r

New State Old State Reward

Learning Rate Discount Factor

https://deeplearning.mit.edu/
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Exploration vs Exploitation

• Deterministic/greedy policy won’t explore all actions
• Don’t know anything about the environment at the beginning
• Need to try all actions to find the optimal one

• ε-greedy policy

• With probability 1-ε perform the optimal/greedy action, otherwise random action

• Slowly move it towards greedy policy: ε -> 0

https://deeplearning.mit.edu/
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Q-Learning: Value Iteration

References: [84]

A1 A2 A3 A4

S1 +1 +2 -1 0

S2 +2 0 +1 -2

S3 -1 +1 0 -2

S4 -2 0 +1 +1

https://deeplearning.mit.edu/
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Q-Learning: Representation Matters

• In practice, Value Iteration is impractical
• Very limited states/actions

• Cannot generalize to unobserved states

• Think about the Breakout game

• State: screen pixels

• Image size: 𝟖𝟒 × 𝟖𝟒 (resized)

• Consecutive 4 images

• Grayscale with 256 gray levels

𝟐𝟓𝟔𝟖𝟒×𝟖𝟒×𝟒 rows in the Q-table!

= 1069,970 >> 1082 atoms in the universe

References: [83, 84]

https://deeplearning.mit.edu/
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Deep RL = RL + Neural Networks

[20]

https://deeplearning.mit.edu/
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DQN: Deep Q-Learning

[83]

Use a neural network to 

approximate the Q-function:

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references
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Deep Q-Network (DQN): Atari

[83]

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references
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DQN and Double DQN

• Loss function (squared error):

[83]

predictiontarget

• DQN: same network for both Q

• Double DQN: separate network for each Q
• Helps reduce bias introduced by the inaccuracies of 

Q network at the beginning of training

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references
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DQN Tricks

• Experience Replay

• Stores experiences (actions, state transitions, and rewards) and creates 
mini-batches from them for the training process

• Fixed Target Network

• Error calculation includes the target function depends on network 
parameters and thus changes quickly. Updating it only every 1,000 
steps increases stability of training process.

[83, 167]

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references


2019https://deeplearning.mit.eduFor the full updated list of references visit:

https://selfdrivingcars.mit.edu/references

Atari Breakout

[85]

After

120 Minutes

of Training

After

10 Minutes

of Training

After

240 Minutes

of Training

https://deeplearning.mit.edu/
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DQN Results in Atari

[83]

https://deeplearning.mit.edu/
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Dueling DQN (DDQN)

• Decompose Q(s,a)

• V(s): the value of being at that state

• A(s,a): the advantage of taking action a in state s versus all other possible 
actions at that state

• Use two streams:

• one that estimates the state value V(s)

• one that estimates the advantage for each action A(s,a)

• Useful for states where action choice does not affect Q(s,a)

[336]

https://deeplearning.mit.edu/
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Prioritized Experience Replay

• Sample experiences based on impact not frequency of occurrence

[336]

https://deeplearning.mit.edu/
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Taxonomy of RL Methods

[334]

https://deeplearning.mit.edu/
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Policy Gradient (PG)

• DQN (off-policy): Approximate Q and infer optimal policy

• PG (on-policy): Directly optimize policy space

[63]

Good illustrative explanation:
http://karpathy.github.io/2016/05/31/rl/

“Deep Reinforcement Learning:
Pong from Pixels”

Policy Network

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references
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Policy Gradient – Training

[63, 204]

• REINFORCE: Policy gradient that increases probability of good actions and 
decreases probability of bad action:

https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references
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Policy Gradient

• Pros vs DQN:

• Messy World: If Q function is too complex to be learned, DQN may fail 
miserably, while PG will still learn a good policy.

• Speed: Faster convergence

• Stochastic Policies: Capable of learning stochastic policies - DQN can’t
• Continuous actions: Much easier to model continuous action space

• Cons vs DQN:

• Data: Sample inefficient (needs more data)

• Stability: Less stable during training process.

• Poor credit assignment to (state, action) pairs  for delayed rewards

[63, 335]

Problem with REINFORCE:

Calculating the reward at the 

end, means all the actions will 

be averaged as good because 

the total reward was high.

https://deeplearning.mit.edu/
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Taxonomy of RL Methods

[334]

https://deeplearning.mit.edu/
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Advantage Actor-Critic (A2C)

• Combine DQN (value-based) and REINFORCE (policy-based)

• Two neural networks (Actor and Critic):

• Actor is policy-based: Samples the action from a policy

• Critic is value-based: Measures how good the chosen action is

[335]

• Update at each time step - temporal difference (TD) learning

https://deeplearning.mit.edu/
https://hcai.mit.edu/references
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Asynchronous Advantage Actor-Critic (A3C)

[337]

• Both use parallelism in training

• A2C syncs up for global parameter update and then start each 
iteration with the same policy

https://deeplearning.mit.edu/
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Taxonomy of RL Methods

[334]

https://deeplearning.mit.edu/
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Deep Deterministic Policy Gradient (DDPG)

• Actor-Critic framework for learning a deterministic policy

• Can be thought of as: DQN for continuous action spaces

• As with all DQN, following tricks are required:

• Experience Replay

• Target network

• Exploration: add noise to actions,
reducing scale of the noise
as training progresses

[341]

https://deeplearning.mit.edu/
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Taxonomy of RL Methods

[334]
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Policy Optimization

• Progress beyond Vanilla Policy Gradient:

• Natural Policy Gradient

• TRPO

• PPO

• Basic idea in on-policy optimization:
Avoid taking bad actions that collapse the training performance.

[339]

Line Search:
First pick direction, then step size

Trust Region:
First pick step size, then direction

https://deeplearning.mit.edu/
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Taxonomy of RL Methods

[334]
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Game of Go

[170]
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AlphaGo (2016) Beat Top Human at Go

[83]
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AlphaGo Zero (2017): Beats AlphaGo

[149]

https://deeplearning.mit.edu/
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AlphaGo Zero Approach

[170]

• Same as the best before: Monte Carlo Tree Search (MCTS)

• Balance exploitation/exploration (going deep on promising positions or 
exploring new underplayed positions)

• Use a neural network as “intuition” for which positions to 
expand as part of MCTS (same as AlphaGo)

https://deeplearning.mit.edu/
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AlphaGo Zero Approach

[170]

• Same as the best before: Monte Carlo Tree Search (MCTS)

• Balance exploitation/exploration (going deep on promising positions or 
exploring new underplayed positions)

• Use a neural network as “intuition” for which positions to 
expand as part of MCTS (same as AlphaGo)

• “Tricks”
• Use MCTS intelligent look-ahead (instead of human games) to improve 

value estimates of play options

• Multi-task learning: “two-headed” network that outputs (1) move 
probability and (2) probability of winning.

• Updated architecture: use residual networks

https://deeplearning.mit.edu/
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AlphaZero vs Chess, Shogi, Go

[340]
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AlphaZero vs Chess, Shogi, Go

[340]

https://deeplearning.mit.edu/
https://hcai.mit.edu/references


2019https://deeplearning.mit.eduFor the full list of references visit:

https://hcai.mit.edu/references

AlphaZero vs Chess, Shogi, Go

[340]
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To date, for most successful robots operating in the real world:

Deep RL is not involved

[169]
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To date, for most successful robots operating in the real world:

Deep RL is not involved
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But… that’s slowly changing:
Learning Control Dynamics

[343]
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But… that’s slowly changing:
Learning to Drive: Beyond Pure Imitation (Waymo)

[343]
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The Challenge for RL in Real-World Applications
Reminder:

Supervised learning:
teach by example

Reinforcement learning:
teach by experience

Open Challenges. Two Options:

1. Real world observation + one-shot trial & error

2. Realistic simulation + transfer learning

1. Improve 

Transfer 

Learning

2. Improve

Simulation

https://deeplearning.mit.edu/
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Thinking Outside the Box:

Multiverse Theory and the Simulation Hypothesis

• Create an (infinite) set of simulation environments to learn in 
so that our reality becomes just another sample from the set.

[342]
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Next Steps in Deep RL

• Lectures: https://deeplearning.mit.edu

• Tutorials: https://github.com/lexfridman/mit-deep-learning

• Advice for Research (from Spinning Up as a Deep RL Researcher by Joshua Achiam)

• Background

• Fundamentals in probability, statistics, multivariate calculus.

• Deep learning basics

• Deep RL basics

• TensorFlow (or PyTorch)

• Learn by doing

• Implement core deep RL algorithms (discussed today)

• Look for tricks and details in papers that were key to get it to work

• Iterate fast in simple environments (see Einstein quote on simplicity)

• Research

• Improve on an existing approach

• Focus on an unsolved task / benchmark

• Create a new task / problem that hasn’t been addressed with RL

[339]
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